Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 172: 116281, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364736

RESUMEN

Progesterone (P4) is a crucial reproductive hormone that acts as a precursor for all other endogenous steroids. P4 modulates transcriptional activity during reproduction by binding to progesterone receptors (PR). However, the physiological role of P4 in the liver is understudied. P4-mediated lipid metabolism in the liver was investigated in this study, as P4 facilitates insulin resistance and influences energy metabolism. While exogenous lipids are mainly obtained from food, the liver synthesizes endogenous triglycerides and cholesterol from a carbohydrate diet. Hepatic de novo lipogenesis (DNL) is primarily determined by acetyl-CoA and its biosynthetic pathways, which involve fatty acid and cholesterol synthesis. While P4 increased the hepatic levels of sterol regulatory element-binding protein 1 C (SREBP-1 C), peroxisome proliferator-activated receptor-gamma (PPARγ), acetyl-CoA carboxylase (ACC), and CD36, co-treatment with the P4 receptor antagonist RU486 blocked these proteins and P4-mediated lipogenesis. RNA sequencing was used to assess the role of P4 in lipogenic events, such as fatty liver and fatty acid metabolism, lipoprotein signaling, and cholesterol metabolism. P4 induced hepatic DNL and lipid anabolism were confirmed in the liver of ovarian resection mice fed a high-fat diet or in pregnant mice. P4 increased lipogenesis directly in mice exposed to P4 and indirectly in fetuses exposed to maternal P4. The lipid balance between lipogenesis and lipolysis determines fat build-up and is linked to lipid metabolism dysfunction, which involves the breakdown and storage of fats for energy and the synthesis of structural and functional lipids. Therefore, P4 may impact the lipid metabolism and reproductive development during gestation.


Asunto(s)
Lipogénesis , Progesterona , Femenino , Embarazo , Animales , Ratones , Progesterona/farmacología , Hígado , Colesterol , Ácidos Grasos , Lípidos
2.
Nat Commun ; 15(1): 1487, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374152

RESUMEN

Proper placental development in early pregnancy ensures a positive outcome later on. The developmental relationship between the placenta and embryonic organs, such as the heart, is crucial for a normal pregnancy. However, the mechanism through which the placenta influences the development of embryonic organs remains unclear. Trophoblasts fuse to form multinucleated syncytiotrophoblasts (SynT), which primarily make up the placental materno-fetal interface. We discovered that endogenous progesterone immunomodulatory binding factor 1 (PIBF1) is vital for trophoblast differentiation and fusion into SynT in humans and mice. PIBF1 facilitates communication between SynT and adjacent vascular cells, promoting vascular network development in the primary placenta. This process affected the early development of the embryonic cardiovascular system in mice. Moreover, in vitro experiments showed that PIBF1 promotes the development of cardiovascular characteristics in heart organoids. Our findings show how SynTs organize the barrier and imply their possible roles in supporting embryogenesis, including cardiovascular development. SynT-derived factors and SynT within the placenta may play critical roles in ensuring proper organogenesis of other organs in the embryo.


Asunto(s)
Sistema Cardiovascular , Placenta , Proteínas Gestacionales , Animales , Femenino , Humanos , Ratones , Embarazo , Diferenciación Celular , Desarrollo Embrionario , Placenta/metabolismo , Placentación/fisiología , Proteínas Gestacionales/genética , Proteínas Gestacionales/metabolismo , Factores Supresores Inmunológicos/metabolismo , Trofoblastos/metabolismo , Sistema Cardiovascular/embriología
3.
Biomater Res ; 27(1): 134, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102691

RESUMEN

BACKGROUND: Tumor-derived exosomes are critical elements of the cell-cell communication response to various stimuli. This study aims to reveal that the histone deacetylase 5 (HDAC5) and p53 interaction upon radiation in hepatocellular carcinoma intricately regulates the secretion and composition of exosomes. METHODS: We observed that HDAC5 and p53 expression were significantly increased by 2 Gy and 4 Gy radiation exposure in HCC. Normal- and radiation-derived exosomes released by HepG2 were purified to investigate the exosomal components. RESULTS: We found that in the radiation-derived exosome, exosomal Maspin was notably increased. Maspin is known as an anti-angiogenic gene. The expression of Maspin was regulated at the cellular level by HDAC5, and it was elaborately regulated and released in the exosome. Radiation-derived exosome treatment caused significant inhibition of angiogenesis in HUVECs and mouse aortic tissues. Meanwhile, we confirmed that miR-151a-3p was significantly reduced in the radiation-derived exosome through exosomal miRNA sequencing, and three HCC-specific exosomal miRNAs were also decreased. In particular, miR-151a-3p induced an anti-apoptotic response by inhibiting p53, and it was shown to induce EMT and promote tumor growth by regulating p53-related tumor progression genes. In the HCC xenograft model, radiation-induced exosome injection significantly reduced angiogenesis and tumor size. CONCLUSIONS: Our present findings demonstrated HDAC5 is a vital gene of the p53-mediated release of exosomes resulting in tumor suppression through anti-cancer exosomal components in response to radiation. Finally, we highlight the important role of exosomal Maspin and mi-151a-3p as a biomarker in enhancing radiation treatment sensitivity. Therapeutic potential of HDAC5 through p53-mediated exosome modulation in radiation treatment of hepatocellular carcinoma.

4.
Cell Rep ; 42(11): 113361, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37910508

RESUMEN

Vascular endothelial growth factor receptor-2 (VEGFR2) plays a key role in maintaining vascular endothelial homeostasis. Here, we show that blood flows determine activation and inactivation of VEGFR2 through selective cysteine modifications. VEGFR2 activation is regulated by reversible oxidation at Cys1206 residue. H2O2-mediated VEGFR2 oxidation is induced by oscillatory flow in vascular endothelial cells through the induction of NADPH oxidase-4 expression. In contrast, laminar flow induces the expression of endothelial nitric oxide synthase and results in the S-nitrosylation of VEGFR2 at Cys1206, which counteracts the oxidative inactivation. The shear stress model study reveals that disturbed blood flow operated by partial ligation in the carotid arteries induces endothelial damage and intimal hyperplasia in control mice but not in knock-in mice harboring the oxidation-resistant mutant (C1206S) of VEGFR2. Thus, our findings reveal that flow-dependent redox regulation of the VEGFR2 kinase is critical for the structural and functional integrity of the arterial endothelium.


Asunto(s)
Células Endoteliales , Peróxido de Hidrógeno , Animales , Ratones , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
5.
Biochem Biophys Res Commun ; 680: 7-14, 2023 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-37703603

RESUMEN

AXL is a member of TAM receptor family and has been highlighted as a potential target for cancer treatment. Accumulating evidence has uncovered the critical role of the AXL signaling pathway in tumor growth, metastasis, and resistance against anti-cancer drugs, as well as its association with cancer immune escape. However, the function of AXL as a manipulator of the immune system in the tumor microenvironment (TME) remains unclear. Therefore, in this study, we investigated the impact of AXL on immune cells in the TME of a syngeneic tumor model using AXL knockout (AXL-/-) mice. Compared to AXL wild-type (AXL+/+) mice, tumor growth was significantly suppressed in AXL-/- mice, and an induced population of tumor-infiltrated CD8+ T cells and CD103+ dendritic cells (DCs) was observed. The change of CD8+ T cells and CD103+ DCs was also confirmed in tumor-draining lymph nodes (TdLN). In addition, the clonal expansion of OVA-specific CD8+ T cells was dominant in AXL-/- mice. Finally, anti-PD-1 treatment evidenced synergistic anti-cancer effects in AXL-/- mice. Overall, our data indicate that AXL signaling may inhibit the clonal expansion of tumor-specific CD8+ T cells through the regulation of the migration of CD8+ T cells and DCs in TME. Thus, AXL may be a powerful molecular target to improve anti-cancer effects through single or combined therapy with immune checkpoint inhibitors (ICI).


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Ratones , Animales , Tirosina Quinasa del Receptor Axl , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Células Dendríticas , Microambiente Tumoral , Ratones Endogámicos C57BL
6.
FASEB J ; 37(8): e23104, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37486753

RESUMEN

A new target that stimulates bone formation is needed to overcome limitations of current anti-osteoporotic drugs. Myokines, factors secreted from muscles, may modulate it. In this study, we investigated the role of aortic carboxypeptidase-like protein (ACLP), which is highly expressed in skeletal muscles, on bone formation. MC3T3-E1 cells and/or calvaria osteoblasts were treated with recombinant N-terminal mouse ACLP containing a signal peptide [rmACLP (N)]. The expression and secretion of ACLP were higher in skeletal muscle and differentiated myotube than in other tissues and undifferentiated myoblasts, respectively. rmACLP (N) increased bone formation, ALP activity, and phosphorylated p38 mitogen-activated protein (MAP) kinase in osteoblasts; reversal was achieved by pre-treatment with a TGF-ß receptor inhibitor. Under H2 O2 treatment, rmACLP (N) increased osteoblast survival, phosphorylated p38 MAP kinase, and the nuclear translocation of FoxO3a in osteoblasts. H2 O2 treatment caused rmACLP (N) to suppress its apoptotic, oxidative, and caspase-9 activities. rmACLP (N)-stimulated osteoblast survival was reversed by pre-treatment with a p38 inhibitor, a TGF-ß-receptor II blocking antibody, and a FoxO3a shRNA. Conditioned media (CM) from muscle cells stimulated osteoblast survival under H2 O2 treatment, in contrast to CM from ACLP knockdown muscle cells. rmACLP (N) increased the expressions of FoxO3a target anti-oxidant genes such as Sod2, Trx2, and Prx5. In conclusion, ACLP stimulated the differentiation and survival of osteoblasts. This led to the stimulation of bone formation by the activation of p38 MAP kinase and/or FoxO3a via TGF-ß receptors. These findings suggest a novel role for ACLP in bone metabolism as a putative myokine.


Asunto(s)
Carboxipeptidasas , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Ratones , Diferenciación Celular/fisiología , Carboxipeptidasas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Osteogénesis , Osteoblastos/metabolismo , Fosforilación
7.
Am J Physiol Gastrointest Liver Physiol ; 324(6): G442-G451, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37070746

RESUMEN

Alcohol-associated liver disease (ALD) is caused by excessive abuse of alcohol. One of the most representative causes of ALD is the action of acetaldehyde. Acetaldehyde is a toxic material produced when alcohol is metabolized through some enzymes, and it causes endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and tissue injury. In this study, we assessed the relationship between Progesterone receptor membrane component 1 (PGRMC1) and ALD because PGRMC1 is expressed in the ER and mitochondria in the liver. Using the chronic and binge alcohol feeding models, we assessed acetaldehyde level, liver damage, alcohol-degrading enzymes, and ER stress. Compared with wild-type (WT) mice ethanol-fed Pgrmc1 knockout (KO) mice had higher levels of alanine aminotransferase (ALT) and alcohol-degrading enzymes, and Pgrmc1 KO mice had high serum acetaldehyde and ER stress levels compared with WT mice with control and ethanol feeding. Loss of Pgrmc1 increased acetaldehyde production through increased expression of alcohol dehydrogenase and catalase, which led to increased ER stress and suggested that cell death was promoted. In conclusion, it has been proposed that the loss of PGRMC1 could promote ALD and cause liver damage in alcohol-abusing humans.NEW & NOTEWORTHY Loss of Pgrmc1 increased acetaldehyde production, and excess acetaldehyde consequently increased ER stress, which activates apoptosis. Since low expression of PGRMC1 is vulnerable to alcoholic liver damage, the loss of PGRMC1 expression may increase susceptibility to ALD.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Hepatopatías Alcohólicas , Humanos , Ratones , Animales , Etanol/toxicidad , Etanol/metabolismo , Acetaldehído/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Hígado/metabolismo , Hepatopatías Alcohólicas/metabolismo , Estrés Oxidativo , Ratones Noqueados , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
8.
Cells ; 12(5)2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36899888

RESUMEN

Heart failure (HF) is an emerging epidemic with a high mortality rate. Apart from conventional treatment methods, such as surgery or use of vasodilation drugs, metabolic therapy has been suggested as a new therapeutic strategy. The heart relies on fatty acid oxidation and glucose (pyruvate) oxidation for ATP-mediated contractility; the former meets most of the energy requirement, but the latter is more efficient. Inhibition of fatty acid oxidation leads to the induction of pyruvate oxidation and provides cardioprotection to failing energy-starved hearts. One of the non-canonical types of sex hormone receptors, progesterone receptor membrane component 1 (Pgrmc1), is a non-genomic progesterone receptor associated with reproduction and fertility. Recent studies revealed that Pgrmc1 regulates glucose and fatty acid synthesis. Notably, Pgrmc1 has also been associated with diabetic cardiomyopathy, as it reduces lipid-mediated toxicity and delays cardiac injury. However, the mechanism by which Pgrmc1 influences the energy-starved failing heart remains unknown. In this study, we found that loss of Pgrmc1 inhibited glycolysis and increased fatty acid/pyruvate oxidation, which is directly associated with ATP production, in starved hearts. Loss of Pgrmc1 during starvation activated the phosphorylation of AMP-activated protein kinase, which induced cardiac ATP production. Pgrmc1 loss increased the cellular respiration of cardiomyocytes under low-glucose conditions. In isoproterenol-induced cardiac injury, Pgrmc1 knockout resulted in less fibrosis and low heart failure marker expression. In summary, our results revealed that Pgrmc1 ablation in energy-deficit conditions increases fatty acid/pyruvate oxidation to protect against cardiac damage via energy starvation. Moreover, Pgrmc1 may be a regulator of cardiac metabolism that switches the dominance of glucose-fatty acid usage according to nutritional status and nutrient availability in the heart.


Asunto(s)
Insuficiencia Cardíaca , Receptores de Progesterona , Humanos , Adenosina Trifosfato/uso terapéutico , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Insuficiencia Cardíaca/metabolismo , Proteínas de la Membrana , Miocitos Cardíacos/metabolismo , Ácido Pirúvico
9.
Sci Adv ; 8(48): eabq0898, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36459558

RESUMEN

C1q/tumor necrosis factor-related protein 9 (CTRP9) is an adipokine and has high potential as a therapeutic target. However, the role of CTRP9 in cardiovascular disease pathogenesis remains unclear. We found CTRP9 to induce HDAC7 and p38 MAPK phosphorylation via tight regulation of AMPK in vascular endothelial cells, leading to angiogenesis through increased MEF2 activity. The expression of CTRP9 and atheroprotective MEF2 was decreased in plaque tissue of atherosclerotic patients and the ventricle of post-infarction mice. CTRP9 treatment inhibited the formation of atherosclerotic plaques in ApoE KO and CTRP9 KO mice. In addition, CTRP9 induced significant ischemic injury prevention in the post-MI mice. Clinically, serum CTRP9 levels were reduced in patients with MI compared with healthy controls. In summary, CTRP9 induces a vasoprotective response via the AMPK/HDAC7/p38 MAPK pathway in vascular endothelial cells, whereas its absence can contribute to atherosclerosis and MI. Hence, CTRP9 may represent a valuable therapeutic target and biomarker in cardiovascular diseases.


Asunto(s)
Aterosclerosis , Infarto del Miocardio , Animales , Ratones , Proteínas Angiogénicas , Adipoquinas , Complemento C1q , Células Endoteliales , Proteínas Quinasas Activadas por AMP , Histona Desacetilasas/genética , Proteínas Quinasas p38 Activadas por Mitógenos , Glicoproteínas , Adiponectina/genética
10.
Front Med (Lausanne) ; 9: 909182, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213678

RESUMEN

Although rats with melanin-pigmentated retinal pigment epithelial (RPE) cells are physiologically more appropriate models for human eye research than their albino counterparts, reliable models from the former strain are not available to study retinal degeneration. Here, we describe the development of a novel Pde6b-knockout Long-Evans (LE Pde6b KO) rat model that recapitulates key features of human retinitis pigmentosa (RP). After the generation of the Pde6b-knockout Sprague-Dawley rats with the CRISPR-Cpf1 system, the LE rat was back-crossed over 5 generations to develop the pigmented LE Pde6b KO strain. Interestingly, LE Pde6b KO displayed well-developed bone-spicule pigmentation; a hallmark of fundus in patients with RP which cannot be observed in non-pigmented albino rats. Moreover, the rat model showed progressive thinning of the retina, which was evident by intravital imaging with optical coherence tomography. Histologically, significant atrophy was observed in the outer nuclear layer. Functionally, LE Pde6b KO presented a marked decrease of amplitude level during electroretinogram testing, demonstrating significant loss of visual function. Therefore, these findings suggest that the LE Pde6b KO model robustly recapitulates the hallmark phenotype of RP. We believe that the LE Pde6b KO model may be used effectively for preclinical translational research to further study retinal degeneration.

11.
iScience ; 25(10): 105135, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36185359

RESUMEN

Here, we found that heterozygous null of peroxisomal Nudt7 (Nudt7 +/- ) induced the typical NAFLD features, i.e. increased levels of hepatic triglyceride (TG) and fatty acid (FA), infiltration of inflammatory cells, impaired glucose tolerance and insulin sensitivity, and stimulation of lipolysis from adipose tissue. Particularly, in Nudt7 +/- hepatocytes, de novo lipogenesis (DNL) was significantly increased. Ingenuity pathway analysis (IPA) and KEGG pathway analysis of RNA sequencing data suggested the activation of PPAR signaling in the liver of Nudt7 +/- mice. Moreover, accumulation of palmitic acid in Nudt7 +/- hepatocyte increased the level of H3K4me3 on the promoters of PPARγ resulting in the activation of PPARγ and induced the DNL in the hepatocytes of Nudt7 +/- mice. Moreover, we found that liraglutide significantly reduced typical NAFLD features induced by NUDT7 deficiency. Our data suggest that dysregulation of peroxisomal NUDT7 is responsible for upregulation of hepatic DNL by accumulation of palmitic acid and PPARγ activation.

12.
Exp Mol Med ; 54(2): 103-114, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35115674

RESUMEN

Despite the strong influence of the gut microbiota on atherosclerosis, a causal relationship between atherosclerosis pathophysiology and gut microbiota is still unverified. This study was performed to determine the impact of the gut microbiota on the pathogenesis of atherosclerosis caused by genetic deficiency. To elucidate the influence of the gut microbiota on atherosclerosis pathogenesis, an atherosclerosis-prone mouse model (C1q/TNF-related protein 9-knockout (CTRP9-KO) mice) was generated. The gut microbial compositions of CTRP9-KO and WT control mice were compared. Fecal microbiota transplantation (FMT) was performed to confirm the association between gut microbial composition and the progression of atherosclerosis. FMT largely affected the gut microbiota in both CTRP9-KO and WT mice, and all transplanted mice acquired the gut microbiotas of the donor mice. Atherosclerotic lesions in the carotid arteries were decreased in transplanted CTRP9-KO mice compared to CTRP9-KO mice prior to transplantation. Conversely, WT mice transplanted with the gut microbiotas of CTRP9-KO mice showed the opposite effect as that of CTRP9-KO mice transplanted with the gut microbiotas of WT mice. Here, we show that CTRP9 gene deficiency is related to the distribution of the gut microbiota in subjects with atherosclerosis. Transplantation of WT microbiotas into CTRP9-KO mice protected against the progression of atherosclerosis. Conversely, the transplantation of CTRP9-KO microbiotas into WT mice promoted the progression of atherosclerosis. Treating atherosclerosis by restoring gut microbial homeostasis may be an effective therapeutic strategy.


Asunto(s)
Aterosclerosis , Microbioma Gastrointestinal , Adiponectina/genética , Adiponectina/metabolismo , Animales , Aterosclerosis/genética , Aterosclerosis/terapia , Complemento C1q , Trasplante de Microbiota Fecal , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
13.
Nat Commun ; 13(1): 3, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34987154

RESUMEN

Here, in Ppara-/- mice, we found that an increased DNL stimulated the cartilage degradation and identified ACOT12 as a key regulatory factor. Suppressed level of ACOT12 was observed in cartilages of OA patient and OA-induced animal. To determine the role and association of ACOT12 in the OA pathogenesis, we generated Acot12 knockout (KO) (Acot12-/-) mice using RNA-guided endonuclease. Acot12-/- mice displayed the severe cartilage degradation with the stimulation of matrix MMPs and chondrocyte apoptosis through the accumulation of acetyl CoA. Delivery of acetyl CoA-conjugated chitosan complex into cartilage stimulated DNL and cartilage degradation. Moreover, restoration of ACOT12 into human OA chondrocytes and OA-induced mouse cartilage effectively rescued the pathophysiological features of OA by regulating DNL. Taken together, our study suggested ACOT12 as a novel regulatory factor in maintaining cartilage homeostasis and targeting ACOT12 could contribute to developing a new therapeutic strategy for OA.


Asunto(s)
Cartílago Articular/metabolismo , Lipogénesis/fisiología , PPAR alfa/metabolismo , Tioléster Hidrolasas/metabolismo , Acetilcoenzima A/metabolismo , Animales , Apoptosis , Condrocitos/metabolismo , Humanos , Lípidos/biosíntesis , Metaloproteinasas de la Matriz/metabolismo , Ratones , Osteoartritis/metabolismo , Cultivo Primario de Células
14.
Cell Mol Gastroenterol Hepatol ; 13(3): 925-947, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34890841

RESUMEN

BACKGROUND & AIMS: Sphingosine 1-phosphate receptors (S1PRs) are a group of G-protein-coupled receptors that confer a broad range of functional effects in chronic inflammatory and metabolic diseases. S1PRs also may mediate the development of nonalcoholic steatohepatitis (NASH), but the specific subtypes involved and the mechanism of action are unclear. METHODS: We investigated which type of S1PR isoforms is activated in various murine models of NASH. The mechanism of action of S1PR4 was examined in hepatic macrophages isolated from high-fat, high-cholesterol diet (HFHCD)-fed mice. We developed a selective S1PR4 functional antagonist by screening the fingolimod (2-amino-2-[2-(4- n -octylphenyl)ethyl]-1,3- propanediol hydrochloride)-like sphingolipid-focused library. RESULTS: The livers of various mouse models of NASH as well as hepatic macrophages showed high expression of S1pr4. Moreover, in a cohort of NASH patients, expression of S1PR4 was 6-fold higher than those of healthy controls. S1pr4+/- mice were protected from HFHCD-induced NASH and hepatic fibrosis without changes in steatosis. S1pr4 depletion in hepatic macrophages inhibited lipopolysaccharide-mediated Ca++ release and deactivated the Nod-like receptor pyrin domain-containning protein 3 (NLRP3) inflammasome. S1P increased the expression of S1pr4 in hepatic macrophages and activated NLRP3 inflammasome through inositol trisphosphate/inositol trisphosphate-receptor-dependent [Ca++] signaling. To further clarify the biological function of S1PR4, we developed SLB736, a novel selective functional antagonist of SIPR4. Similar to S1pr4+/- mice, administration of SLB736 to HFHCD-fed mice prevented the development of NASH and hepatic fibrosis, but not steatosis, by deactivating the NLRP3 inflammasome. CONCLUSIONS: S1PR4 may be a new therapeutic target for NASH that mediates the activation of NLRP3 inflammasome in hepatic macrophages.


Asunto(s)
Inflamasomas , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Inflamasomas/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Receptores de Esfingosina-1-Fosfato
15.
Biol Reprod ; 106(3): 583-596, 2022 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-34850819

RESUMEN

The placenta regulates maternal-fetal communication, and its defect leads to significant pregnancy complications. The maternal and embryonic circulations are primitively connected in early placentation, but the function of the placenta during this developmentally essential period is relatively unknown. We thus performed a comparative proteomic analysis of the placenta before and after primary placentation and found that the metabolism and transport of lipids were characteristically activated in this period. The placental fatty acid (FA) carriers in specific placental compartments were upregulated according to gestational age, and metabolomic analysis also showed that the placental transport of FAs increased in a time-dependent manner. Further analysis of two mutant mice models with embryonic lethality revealed that lipid-related signatures could reflect the functional state of the placenta. Our findings highlight the importance of the nutrient transport function of the primary placenta in the early gestational period and the role of lipids in embryonic development. SUMMARY SENTENCE: The placenta is activated characteristically in terms of lipid transport during primary placentation, and the lipid-related signatures closely reflect the functional state of the placenta.


Asunto(s)
Placenta , Placentación , Animales , Ácidos Grasos/metabolismo , Femenino , Edad Gestacional , Ratones , Placenta/metabolismo , Embarazo , Proteómica
16.
J Cachexia Sarcopenia Muscle ; 12(6): 1724-1740, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34423586

RESUMEN

BACKGROUND: Sarcopenia and osteoporosis frequently co-occur in the elderly and have common pathophysiological determinants. Slit guidance ligand 3 (SLIT3) has been recently discovered as a novel therapeutic factor against osteoporosis, and a SLIT3 fragment containing the second leucine-rich repeat domain (LRRD2) had a therapeutic efficacy against osteoporosis. However, a role of SLIT3 in the skeletal muscle is unknown. METHODS: Skeletal muscle mass, strength, and/or physical activity were evaluated in Slit3-/- , ovariectomized, and aged mice, based on the measurements of muscle weight and grip strength, Kondziella's inverted hanging test, and/or wheel-running test. Skeletal muscles were also histologically evaluated by haematoxylin and eosin staining and/or immunofluorescence. The ovariectomized and aged mice were intravenously injected with recombinant SLIT3 LRRD2 for 4 weeks. C2C12 cells were used to know cellular effects of SLIT3, such as in vitro myogenesis, fusion, cell viability, and proliferation, and also used to evaluate its molecular mechanisms by immunocytochemistry, immunoprecipitation, western blotting, real-time PCR, siRNA transfection, and receptor-ligand binding ELISA. RESULTS: Slit3-deficient mice exhibited decreased skeletal muscle mass, muscle strength, and physical activity. The relative masses of gastrocnemius and soleus were lower in the Slit3-/- mice (0.580 ± 0.039% and 0.033 ± 0.003%, respectively) than those in the WT littermates (0.622 ± 0.043% and 0.038 ± 0.003%, respectively) (all, P < 0.05). Gastrocnemius of Slit3-/- mice showed the reduced number of Type I and Type IIa fibres (all, P < 0.05), but not of Type IIb and Type IIx fibres. SLIT3 activated ß-catenin signalling by promoting its release from M-cadherin, thereby increasing myogenin expression to stimulate myoblast differentiation. In vitro experiments involving ROBO2 expression, knockdown, and interaction with SLIT3 indicated that ROBO2 functions as a SLIT3 receptor to aid myoblast differentiation. SLIT3 LRRD2 dissociated M-cadherin-bound ß-catenin and up-regulated myogenin expression to increase myoblast differentiation, in a manner similar to full-length SLIT3. Systemic treatment with SLIT3 LRRD2 increased skeletal muscle mass in both ovariectomized and aged mice (all, P < 0.05). The relative masses of gastrocnemius and soleus were higher in the treated aged mice (0.548 ± 0.045% and 0.033 ± 0.005%, respectively) than in the untreated aged mice (0.508 ± 0.016% and 0.028 ± 0.003%, respectively) (all, P < 0.05). SLIT3 LRRD2 treatment increased the hanging duration of the aged mice by approximately 1.7-fold (P < 0.05). CONCLUSIONS: SLIT3 plays a sarcoprotective role by activating ß-catenin signalling. SLIT3 LRRD2 can potentially be used as a therapeutic agent against muscle loss.


Asunto(s)
Desarrollo de Músculos , Músculo Esquelético , Animales , Diferenciación Celular , Proteínas de la Membrana/genética , Ratones , Atrofia Muscular , ARN Interferente Pequeño , Receptores Inmunológicos , Sarcopenia/prevención & control , Transfección
17.
Exp Mol Med ; 53(7): 1159-1169, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34285335

RESUMEN

In this study, we hypothesized that deregulation in the maintenance of the pool of coenzyme A (CoA) may play a crucial role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Specific deletion of Acot12 (Acot12-/-), the major acyl-CoA thioesterase, induced the accumulation of acetyl-CoA and resulted in the stimulation of de novo lipogenesis (DNL) and cholesterol biosynthesis in the liver. KEGG pathway analysis suggested PPARα signaling as the most significantly enriched pathway in Acot12-/- livers. Surprisingly, the exposure of Acot12-/- hepatocytes to fenofibrate significantly increased the accumulation of acetyl-CoA and resulted in the stimulation of cholesterol biosynthesis and DNL. Interaction analysis, including proximity-dependent biotin identification (BioID) analysis, suggested that ACOT12 may directly interact with vacuolar protein sorting-associated protein 33A (VPS33A) and play a role in vesicle-mediated cholesterol trafficking and the process of lysosomal degradation of cholesterol in hepatocytes. In summary, in this study, we found that ACOT12 deficiency is responsible for the pathogenesis of NAFLD through the accumulation of acetyl-CoA and the stimulation of DNL and cholesterol via activation of PPARα and inhibition of cholesterol trafficking.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/metabolismo , Tioléster Hidrolasas/metabolismo , Acetilcoenzima A/metabolismo , Animales , Colesterol/biosíntesis , Colesterol/genética , Dieta Alta en Grasa/efectos adversos , Femenino , Humanos , Lípidos/biosíntesis , Lípidos/genética , Lipogénesis/fisiología , Lipólisis/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/genética , PPAR alfa/genética , PPAR alfa/metabolismo , Embarazo , Tioléster Hidrolasas/genética
18.
Cancers (Basel) ; 13(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34069911

RESUMEN

Pgrmc1 is a non-canonical progesterone receptor related to the lethality of various types of cancer. PGRMC1 has been reported to exist in co-precipitated protein complexes with epidermal growth factor receptor (EGFR), which is considered a useful therapeutic target in hepatocellular carcinoma (HCC). Here, we investigated whether Pgrmc1 is involved in HCC progression. In clinical datasets, PGRMC1 transcription level was positively correlated with EGFR levels; importantly, PGRMC1 level was inversely correlated with the survival duration of HCC patients. In a diethylnitrosamine (DEN)-induced murine model of HCC, the global ablation of Pgrmc1 suppressed the development of HCC and prolonged the survival of HCC-bearing mice. We further found that increases in hepatocyte death and suppression of compensatory proliferation in the livers of DEN-injured Pgrmc1-null mice were concomitant with decreases in nuclear factor κB (NF-κB)-dependent production of interleukin-6 (IL-6). Indeed, silencing of Pgrmc1 in murine macrophages led to reductions in NF-κB activity and IL-6 production. We found that the anti-proinflammatory effect of Pgrmc1 loss was mediated by reductions in EGFR level and its effect was not observed after exposure of the EGFR inhibitor erlotinib. This study reveals a novel cooperative role of Pgrmc1 in supporting the EGFR-mediated development of hepatocellular carcinoma, implying that pharmacological suppression of Pgrmc1 may be a useful strategy in HCC treatment.

19.
Cells Dev ; 165: 203663, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33993984

RESUMEN

Asb2, ankyrin repeat, and SOCS box protein 2 form an E3 ubiquitin ligase complex. Asb2 ubiquitin ligase activity drives the degradation of filamins, which have essential functions in humans. The placenta is a temporary organ that forms during pregnancy, and normal placentation is important for survival and growth of the fetus. Recent studies have shown that approximately 25-30% of knockout (KO) mice have non-viable offspring, and 68% of knockout lines exhibit placental dysmorphologies. There are very few studies on Asb2, with insufficient research on its role in placental development. Therefore, we generated Asb2 knockout mice and undertook to investigate Asb2 expression during organogenesis, and to identify its role in early embryonic and placental development. The external morphology of KO embryos revealed abnormal phenotypes including growth retardation, pericardial effusion, pale color, and especially heart beat defect from E 9.5. Furthermore, Asb2 expression was observed in the heart from E 9.5, indicating that it is specifically expressed during early heart formation, resulting in embryonic lethality. Histological analysis of E 10.5 KO heart showed malformations such as failure of chamber formation, reduction in trabeculated myocardium length, absence of mesenchymal cells, and destruction of myocardium wall. Moreover, the histological results of Asb2-deficient placenta showed abnormal phenotypes including small labyrinth and reduced vascular complexity, indicating that failure to establish mature circulatory pattern affects the embryonic development and results in early mortality. Collectively, our results demonstrate that Asb2 knockout mice have placental defects, that subsequently result in failure to form a normal cardiac septum, and thereby result in embryo mortality in utero at around E 9.5.


Asunto(s)
Pérdida del Embrión/patología , Cardiopatías Congénitas/patología , Placenta/patología , Proteínas Supresoras de la Señalización de Citocinas/deficiencia , Alelos , Animales , Cruzamientos Genéticos , Pérdida del Embrión/genética , Embrión de Mamíferos/patología , Desarrollo Embrionario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Cardiopatías Congénitas/genética , Masculino , Ratones Noqueados , Fenotipo , Embarazo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
20.
Sci Rep ; 11(1): 8781, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888830

RESUMEN

Obesity is implicated in cardiovascular disease and heart failure. When fatty acids are transported to and not adequately oxidized in cardiac cells, they accumulate, causing lipotoxicity in the heart. Since hepatic progesterone receptor membrane component 1 (Pgrmc1) suppressed de novo lipogenesis in a previous study, it was questioned whether cardiac Pgrmc1 protects against lipotoxicity. Hence, we focused on the role of cardiac Pgrmc1 in basal (Resting), glucose-dominant (Refed) and lipid-dominant high-fat diet (HFD) conditions. Pgrmc1 KO mice showed high FFA levels and low glucose levels compared to wild-type (WT) mice. Pgrmc1 KO mice presented low number of mitochondrial DNA copies in heart, and it was concomitantly observed with low expression of TCA cycle genes and oxidative phosphorylation genes. Pgrmc1 absence in heart presented low fatty acid oxidation activity in all conditions, but the production of acetyl-CoA and ATP was in pronounced suppression only in HFD condition. Furthermore, HFD Pgrmc1 KO mice resulted in high cardiac fatty acyl-CoA levels and TG level. Accordingly, HFD Pgrmc1 KO mice were prone to cardiac lipotoxicity, featuring high levels in markers of inflammation, endoplasmic reticulum stress, oxidative stress, fibrosis, and heart failure. In vitro study, it was also confirmed that Pgrmc1 enhances rates of mitochondrial respiration and fatty acid oxidation. This study is clinically important because mitochondrial defects in Pgrmc1 KO mice hearts represent the late phase of cardiac failure.


Asunto(s)
Ácidos Grasos/metabolismo , Proteínas de la Membrana/fisiología , Mitocondrias/metabolismo , Miocardio/metabolismo , Receptores de Progesterona/fisiología , Animales , Ratones , Ratones Noqueados , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...